Extremal Functions for Graph Linkages and Rooted Minors

نویسندگان

  • Paul Wollan
  • William Trotter
  • Richard Duke
  • Dana Randall
  • Tom Trotter
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal functions for rooted minors

The graph G contains a graph H as a minor if there exist pair-wise disjoint sets {Si ⊆ V (G)|i = 1, . . . , |V (H)|} such that for every i, G[Si] is a connected subgraph and for every edge uv in H, there exists an edge of G with one end in Su and the other end in Sv. A rooted H minor in G is a minor where each Si of minor contains a predetermined xi ∈ V (G). We prove that if the constant c is s...

متن کامل

Interval minors of complete bipartite graphs

Interval minors of bipartite graphs were recently introduced by Jacob Fox in the study of Stanley-Wilf limits. We investigate the maximum number of edges in Kr,s-interval minor free bipartite graphs. We determine exact values when r = 2 and describe the extremal graphs. For r = 3, lower and upper bounds are given and the structure of K3,s-interval minor free graphs is studied.

متن کامل

The Extremal Functions for Triangle-free Graphs with Excluded Minors

We prove two results: 1. A graph G on at least seven vertices with a vertex v such that G − v is planar and t triangles satisfies |E(G)| ≤ 3|V (G)| − 9 + t/3. 2. For p = 2, 3, . . . , 9, a triangle-free graph G on at least 2p − 5 vertices with no Kp-minor satisfies |E(G)| ≤ (p− 2)|V (G)| − (p− 2).

متن کامل

Graph Minors

For a given graph G and integers b, f ≥ 0, let S be a subset of vertices of G of size b + 1 such that the subgraph of G induced by S is connected and S can be separated from other vertices of G by removing f vertices. We prove that every graph on n vertices contains at most n/ b+f b such vertex subsets. This result from extremal combinatorics appears to be very useful in the design of several e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005